Controlling Undesirable Trees, Shrubs, and Vines in Your Woodland

Randall B. Heiligmann
Associate Professor of Forestry
Extension Specialist, Forestry

Timber stand improvement is the removal or deadening of undesirable vines, shrubs, and trees in a forest stand. It is a major forest management tool to help woodland owners achieve their management objectives. Once ownership objectives are identified, the less desirable trees can be removed to favor the growth of those that better satisfy the owner’s objectives (e.g., quality timber, wildlife habitat, etc.). At the same time, woody plants that pose a threat to human health or safety, such as poison ivy, can be eliminated. Several timber stand improvement techniques can also be used to create standing dead trees to provide various types of wildlife habitat such as perches, dens, and foraging trees for animals and birds.

Timber stand improvement can be accomplished by cutting the less desirable woody vegetation or by killing it in place. Undesirable trees with commercial value can be sold, making the timber stand improvement operation an income-generating forest management activity. Some undesirable trees may be used for lumber, firewood or other products. Grapevines might be used for wreaths. In most timber stand improvement operations, however, the undesirable vegetation is of little economic value or use. Although it can be cut and left in the woods, the safest and most efficient way to remove undesirable vegetation is often to kill the trees, shrubs, or vines and leave them standing.

The most effective method for killing standing trees, shrubs, and vines will usually involve the use of an herbicide. For those who prefer not to use pesticides, cutting, frilling, or girdling can be used without herbicides. However, physical methods of deadening standing trees that do not use herbicides are generally less dependable (particularly with hard-to-kill species such as red maple, hickories, and dogwoods) and require longer to be effective than those that incorporate herbicides into the treatment.

Selected Timber Stand Improvement Techniques

The remainder of this fact sheet discusses when and how to use four commonly applied timber stand improvement techniques: frilling or girdling, spaced cuts or injection, basal bark spraying, and cut stump application. Fact Sheet F-45 Supplement-97 presents herbicides commonly used with each method, along with brief recommendations for their use. As noted in the fact sheet, these recommendations are not complete instructions; they are provided to help you select among the herbicides. It is essential that you read the entire label before using any herbicide. The label contains complete instructions for use, along with other valuable information such as personal and environmental safety considerations and procedures. Many of the labels also list information about the effectiveness of the herbicide in controlling different species of trees, shrubs, and vines. All herbicides are not equally effective in controlling different species.

Herbicides, like all pesticides, are approved (labeled) for specific uses by the Environmental Protection Agency. These approved uses are listed and described on the pesticide’s label. The herbicides listed in Tables 1-5 were appropriately labeled at the time of publication (Winter 1997-98). Because pesticide labeling may change at any time, you should verify that a particular herbicide is still labeled for your intended use.

References to Tables 1-5 in the remainder of this fact sheet refer to the tables in Fact Sheet F-45 Supplement-97.

Frilling or Girdling

Girdling and frilling are methods of killing standing trees that may be done with or without an herbicide.

Girdling involves cutting a groove or notch into the trunk of a tree to interrupt the flow of sap between the roots and crown of the tree (Figure 1). The groove must completely encircle the trunk and should penetrate into the wood to a depth of at least 1/2 inch on small trees, and 1 to 1-1/2 inches on larger trees. Girdling can be done with an ax, hatchet, or chain saw. When done with an ax or hatchet, the girdle is made by striking from above and below along a line around the trunk so that a notch of wood and bark is removed. The width of the notch varies with the size of the tree. Effective girdles may be as narrow as 1 or 2 inches on small-diameter trees, and as wide as 6 or 8 inches on very large-diameter trees. When a chain saw is used to girdle, two horizontal cuts between 2 and 4 vertical inches apart are usually made completely around the tree when no herbicide is used (Figure 2) and one horizontal cut is made completely around the tree when herbicide is used (Figure 4).
Frilling is a variation of girdling in which a series of downward angled cuts are made completely around the tree, leaving the partially severed bark and wood anchored at the bottom (Figure 3). Frilling is done with an ax or hatchet.

By themselves, girdling and frilling are physical methods to deaden trees that require very little equipment and may be done without herbicides. Both techniques require considerable time to carry out, particularly with an ax or hatchet. Girdling with a chainsaw is much faster. The effectiveness of girdling and frilling depends on the tree species and on the size and completeness of the girdle or frill. To be effective, girdles and frills must completely encircle the tree. Because frills can heal-over more easily, girdling is usually more effective.

The effectiveness of both girdling and frilling can be increased by using herbicides (Table 1). With frilling and girdling, water soluble forms of herbicides are most commonly used to get maximum movement of herbicide within the plant. When using water-soluble herbicides, the herbicide/water mixture is commonly applied by squirting it on the girdle or frill until the cut surface is wet. Hand-held, pint or quart spray bottles, such as those available at local garden stores, are ideal for applying herbicide to the girdle (Figure 4). Again, note that a single, rather than double chain saw girdle is used when a water soluble herbicide is to be applied (Figure 4).

Exceptions to the above recommendation of using a water soluble herbicide for girdling and frilling are the commonly-used forestry herbicides that contain the ester formulation of 2,4-D + 2,4-DP, such as Patron 170 and Super Brush Killer. They are labeled for use with frilling in an oil carrier, and the recommendation is to fill the frill with the mixture. They are commonly applied with a backpack or hand-held, hand-pumped sprayer.

Spaced Cuts - Tree Injection

Tree injection involves introducing an herbicide into the undesirable tree through spaced cuts made around the trunk of the tree with an ax, hatchet, or tree injector (Figure 5). The procedure can be visualized as a discontinuous frill with a small amount of herbicide placed in each cut. With an ax or hatchet, non-overlapping horizontal cuts penetrating into the sapwood (the outer area of lighter-colored wood in the stem cross section) are made completely around the tree. Cuts are approximately 2 inches long and are spaced with their edges 1 to 3 inches apart, depending on tree species and specific herbicide being used. A small amount of herbicide is then placed in each cut (Table 2). This can be done conveniently with a pint or quart spray bottle (such as those available at garden stores). The amount of herbicide to be placed in the cut is specified on the herbicide label, but is generally 1 to 2 milliliters. There are also various tree injectors available including the “hypo-hatchet,” which is a hatchet with a reservoir constructed to inject herbicide when it is struck into the tree.

Tree injection is generally more effective than mechanical girdling or frilling without herbicide because of the use of the herbicide. However, on difficult-to-control species, such as red maple, hickories and dogwoods, a continuous frill or girdle with herbicide may be necessary to obtain acceptable control. For this reason, many commercial TSI (timber stand improvement) contractors routinely use a single chain saw girdle with herbicide on all species to maximize effectiveness.

As with most of the herbicides suggested for use with girdling and frilling, the herbicides for tree injection are mostly watersoluble materials that move vertically and horizontally within the tree to complete a chemical girdle.
Basal Bark Spray

Basal spraying, or basal bark as it is sometimes referred to, is a technique to deaden small trees, shrubs, and occasionally vines by spraying the lower 12 to 18 inches of the trunk with an herbicide (Figure 6). The intent is for the herbicide to penetrate the bark and kill the tree and any basal buds that might sprout. Herbicides used for basal spraying are generally applied in oil carriers (Table 3). The technique is effective on trees less than 4 to 6 inches in diameter. As bark becomes rougher and thicker, the technique becomes less effective. Care must be taken when the herbicide is applied to minimize the amount that runs into the soil. This is important not only from an environmental quality standpoint, but also to avoid damaging nontarget trees. The roots of trees often extend well out beyond their crowns. It would not be at all unusual for the roots of an adjacent desirable tree to extend below the trunk of a tree being basal sprayed. If excess amounts of herbicide were applied to the treated tree, the adjacent desirable tree could absorb the herbicide and be killed or seriously damaged.

Cut Stump

When a tree or vine is cut, there is a high probability that the stump will sprout. When this is undesirable, the sprouting can be eliminated by treating the cut stump with an herbicide. Herbicide can be applied to the stump in many ways, the most common being to spray with a backpack or hand-held sprayer.

How much of the stump needs to be treated depends on the formulation of herbicide used. Many of the herbicides labeled for cut stump application are water soluble (Table 4). With these materials it is not necessary to treat the entire stump. The critical area of the stump that must be treated to prevent sprouting is the sapwood and bark of the stump’s cut surface (Figure 7). Stump treatment with water soluble herbicides must be done immediately after cutting the tree or vine in order to be effective. If treatment is delayed, adequate downward movement of the herbicide will not occur and sprouting will not be eliminated.

Some herbicides labeled for cut stump application are formulated to be mixed with oil (Table 5). These materials do not move readily within the plant, but penetrate the bark. To be effective in suppressing stump sprouting, the entire stump, particularly the bark and exposed roots, must be thoroughly sprayed (Figure 8). Timing is less critical with these materials because they are not so dependent on movement downward from the cut surface to distribute the herbicide. In situations where immediate treatment of stumps is not possible, an herbicide in an oil carrier should be used rather than one in a water carrier.

Treatment with an oil-carried herbicide is also recommended in the spring when treating species that exhibit a spring “sap flow,” such as the maples (Acer), grape (Vitis) and ironwood (Ostrya). Water-carried herbicides will usually not be adequately absorbed to be effective during the spring “sap-flow.”